

WJEC 2014 Online Exam Review

GCE Mathematics S3 985-01

All Candidates' performance across questions

?	?	?	?	?	?	?	_
Question Title	N	Mean	S D	Max Mark	F F	Attempt %	
1	174	5.5	1.2	6	91.2	100	
2	174	10.5	2.6	13	80.9	100	\leftarrow
3	173	10.7	3.1	13	82.7	99.4	
4	174	8.6	2.6	11	78.3	100	\leftarrow
5	174	13.8	4.1	18	76.6	100	\leftarrow
6	171	6.9	4.7	14	49.3	98.3	\leftarrow

2.	The mean weight of a certain breed of bird is believed to be 4.5 kg. In order to test this belief,
	a random sample of 10 birds of the breed was obtained and weighed, with the following results
	in kg.

4.38 4.18 4.46 4.59 4.16 4.57 4.16 4.26 4.49 4.35

You may assume that the weights of this breed of bird are normally distributed.

- (a) State suitable hypotheses for testing the above belief using a two-sided test. [1]
- (b) Calculate unbiased estimates of the mean and the variance of the weights of this breed of bird. [5]
- (c) Carry out an appropriate test using a 1% significance level and state your conclusion in context, justifying your answer. [7]

4. A market gardener grows a large number of tomato plants, all of which are Variety A or Variety B. He wishes to investigate whether or not there is a difference in the mean weights of tomatoes obtained from these two varieties over the whole season. He therefore selects random samples of 80 plants of Variety A and 70 plants of Variety B and he records the total yield, in kg, from each plant. At the end of the season, he produces the following summary statistics.

	Variety A	Variety B
Sample size	80	70
Sample mean	3.52	3.65
Unbiased variance estimate	0.115	0.096

(a)	State suitable hyp	otheses for	ion.					
	-					 		

Calculate the approximate p-value of the above results and state your conclusion in (b) context.

[1]

[2] (c) Give two reasons why the *p*-value is approximate and not exact.

Leave Question umber Gadewo Rhif y yn wag Cwestiwn :. p-value = 2 P(4. 80 70 2 PCZ 47 2.45286 $\approx 2P(Z > 2.45)$ = 2[1-P(Z < 2.45]The p-value is approximate and because variance has been and CLT assumes Normal population = Central Limit Theorem.

5. The variables x and y are related by an equation of the form $y = \alpha + \beta x$. In order to estimate the unknown constants α and β , the following measurements were made.

Х	2	4	6	8	10	12
У	19·8	33.9	49.9	64·1	77.9	95.0

(a) Calculate least squares estimates for α and β .

[8]

- (b) The values of x are exact but the values of y are subject to independent normally distributed measurement errors with mean zero and standard deviation 0.5.
 - (i) Calculate an unbiased estimate of the value of y when x = 5.
 - (ii) Determine a 95% confidence interval for the value of y when x = 5.
 - (iii) It was thought beforehand that the value of β was 7.6. Determine whether or not, at the 5% significance level, the values in the table above are consistent with this value of β . [10]

Leave Blank Gadewch yn wag

5(b).	
(i)	95%- CI fr y = (41.85 + 1.96 (052)
	1
	= (41.45, 42-25)
< 1.1	
((1)	whn #=2 y=19.8
	B= 7.625
	2=4 amore B= 7.47
	R 7 22
	B = 7-3)
	who x-6
	B = 7-56
	when N-6
is .	
	B= 7- 68
	when x = 10
	B = 7.335
	uhn x = 12
	B-7.54
	Ha
	P(XB<7.67) = P(Z<7.47-7.6)
	(4-7.4)
	. 0.5
	= P(\$ 70.26)
	= 0-3974
	0.3114
	at 5% sig level value of & are not consistent
,	

- **6.** The continuous random variable X is uniformly distributed on the interval $[0, \theta]$, where θ is unknown. In order to estimate θ , a random sample of n observations on X is obtained and \overline{X} denotes the mean of this sample. An unbiased estimator for θ is given by $Y = k\overline{X}$.
 - (a) (i) Find the value of k.

(ii) Find the standard error of Y. [8]

(b) (i) Show that Y^2 is not an unbiased estimator for θ^2 .

(ii) Find an unbiased estimator for θ^2 . [6]

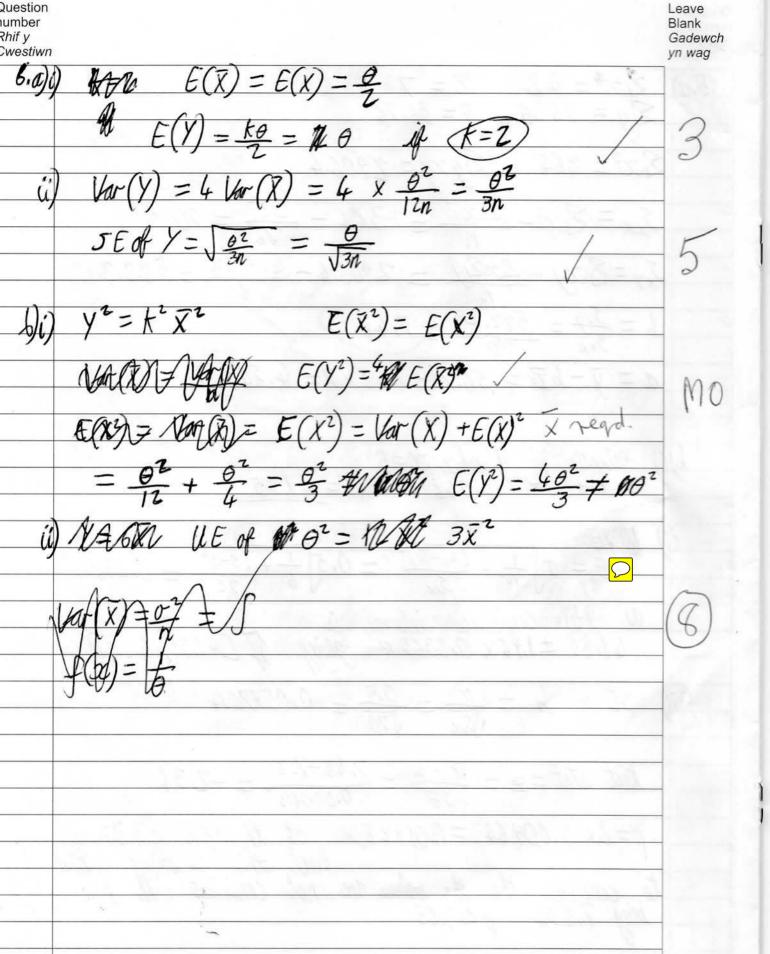
Westiwn
$$E(X) = E(X) = \frac{\theta}{2}$$

$$E(Y) = \frac{k\theta}{2} = R \theta \qquad \text{if} \qquad K=Z$$

$$E(Y) = \frac{k\theta}{2} = R \theta \qquad \text{if} \qquad K=Z$$

$$E(Y) = \frac{k\theta}{2} = R \theta \qquad \text{if} \qquad K=Z$$

$$E(X) = \frac{\theta^2}{12n} = \frac{\theta^2}{3n}$$


$$E(X) = \frac{\theta^2}{3n} = \frac{\theta}{\sqrt{3n}}$$

$$E(X) = \frac{\theta}{\sqrt{3n}}$$

$$Var(X) \neq Var(X) = 4 (X)^{2}$$

$$E(X^2) = Var(X) = E(X^2) = Var(X) + E(X)^2$$

$$= \frac{\theta^2}{12} + \frac{\theta^2}{4} = \frac{\theta^2}{3} + 10000 \quad E(y^2) = \frac{4\theta^2}{3} + 100^2$$

